Semi-Supervised Anomaly Detection of Dissolved Oxygen Sensor in Wastewater Treatment Plants
نویسندگان
چکیده
As the world progresses toward a digitally connected and sustainable future, integration of semi-supervised anomaly detection in wastewater treatment processes (WWTPs) promises to become an essential tool preserving water resources assuring continuous effectiveness plants. When these complex dynamic systems are coupled with limited historical data or anomalies, it is crucial have powerful tools capable detecting subtle deviations from normal behavior enable early equipment malfunctions. To address this challenge, study, we analyzed five machine learning techniques (SSLs) such as Isolation Forest (IF), Local Outlier Factor (LOF), One-Class Support Vector Machine (OCSVM), Multilayer Perceptron Autoencoder (MLP-AE), Convolutional (Conv-AE) for different anomalies (complete, concurrent, complex) Dissolved Oxygen (DO) sensor aeration valve WWTP. The best results obtained case Conv-AE algorithm, accuracy 98.36 complete faults, 97.81% concurrent 98.64% faults (a combination incipient faults). Additionally, developed system most effective technique, which can provide delay time generate fault alarm each considered anomaly.
منابع مشابه
Fixed-Background EM Algorithm for Semi-Supervised Anomaly Detection
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Tommi Vatanen, Mikael Kuusela, Eric Malmi, Tapani Raiko, Timo Aaltonen and Yoshikazu Nagai Name of the publication Fixed-Background EM Algorithm for Semi-Supervised Anomaly Detection Publisher School of Science Unit Department of Information and Computer Science Series Aalto University publication series SCIENCE + TECHNOLOGY 2...
متن کاملUnsupervised and Semi-supervised Anomaly Detection with LSTM Neural Networks
We investigate anomaly detection in an unsupervised framework and introduce Long Short Term Memory (LSTM) neural network based algorithms. In particular, given variable length data sequences, we first pass these sequences through our LSTM based structure and obtain fixed length sequences. We then find a decision function for our anomaly detectors based on the One Class Support Vector Machines (...
متن کاملSemi-supervised Statistical Approach for Network Anomaly Detection
Intrusion Detection Systems (IDS) have become a very important defense measure against security threats. In recent years, computer networks are widely deployed for critical and complex systems, which make them more vulnerable to network attacks. In this paper, we propose a two-stage Semi-supervised Statistical approach for Anomaly Detection (SSAD). The first stage of SSAD aims to build a probab...
متن کاملToward Supervised Anomaly Detection
Anomaly detection is being regarded as an unsupervised learning task as anomalies stem from adversarial or unlikely events with unknown distributions. However, the predictive performance of purely unsupervised anomaly detection often fails to match the required detection rates in many tasks and there exists a need for labeled data to guide the model generation. Our first contribution shows that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2023
ISSN: ['1424-8220']
DOI: https://doi.org/10.3390/s23198022